2020年1月23日木曜日

【offer information】Okayama University Medical Research Updates (OU-MRU) Vol.72「Synthetic compound provides fast screening for potential drugs」

Source: Okayama University (JAPAN), Public Relations Division
For immediate release: 4 November 2019
Okayama University research: Synthetic compound provides fast screening for potential drugs

(Okayama, 4 November) A simple assay may benefit drug discovery for treating diabetes, Parkinson’s, and Alzheimers disease, as well as studies of functional food and endocrine disruptor report researchers at Okayama University in the Journal of Medicinal Chemistry. The assay hinges on a synthetic compound that allows faster screening with fewer hardware resource requirements than existing methods.

Retinoid X receptors (RXRs) are a type of nuclear receptor - proteins that regulate an organism’s development, homeostasis and metabolism. They usually operate as heterodimers alongside other proteins and receptors, so the ligands targeting them are key to controlling their activity. RXR activators have attracted particular interest recently because of their potential to treat diabetes, Alzheimers and Parkinsons disease. They are also associated with functional foods and processes by which environmental pollutants damage health. However, methods for screening compounds for their potential RXR targeting ligand activity have so far proved slow and awkward. Associate Professor KAKUTA Hiroki at University of Okayama Graduate School of Medicine and Shogo Nakano at the University of Shizuoka in Japan, and their colleagues have now demonstrated an assay based on a synthetic compound CU-6PMN - referred to as 10 - that can screen for RXR targeting ligand activity in hours instead of days with no complex equipment or radioactive isotopes needed.

The researchers based the chemical structure of synthetic compound 10, on the RXR activator CD3254, referred to as compound 9. “Because 9 has a cinnamic acid structure, we anticipated that this structure could be developed toward an umbelliferone structure,” they explain in their report of the work. The significance of umbelliferone is its fluorescence. Not only is the fluorescence of umbelliferone relatively easy to detect - widely available filter sets can detect it - but the compound can also be modified so that its fluorescence intensity increases in aqueous environments. This means that if a compositely binding RXR ligand displaces the receptor bound compound, the fluorophore will be exposed to a more aqueous environment, its fluorescence will increase, and the activity of the ligand can be detected.

With compound 10 the researchers showed they could detect RXR targeting ligand activity in just a few hours with standard fluorescence microplate readers and no need for complicated processes. In their report they conclude, “We believe it will be useful not only for identifying RXR binders in drug discovery studies but also for studies of functional foods and endocrine disruptors, though it should be noted that fluorescence-based assays often suffer from interference when used to screen natural products.”

Background
Nuclear receptor activity mechanisms

Nuclear receptors are found in cells. They sense the presence of small molecules such as steroid and thyroid hormones and regulate the expression of genes to control bodily processes. The human body has 48 types of nuclear receptor. The RXR activator bexarotene is already used clinically to treat cutaneous T cell lymphoma, and recent studies have recommended its potential for treating diabetes, Alzheimer’s disease, and Parkinson’s disease. Polyunsaturated fatty acids including docosahexaenoic acid (DHA) are naturally occurring RXR targeting ligands and are linked to improved memory and metabolic syndrome. Conversely the impact of environmental polluters on nuclear receptors can inhibit their interaction with hormones and disrupt the endocrine system.

Current assay techniques
To test for the presence and activity of substances, researchers in medicine, pharmacology and environmental and molecular biology use assays. Previous assays for RXR targeting ligand activity have also used fluorescence, but they have had drawbacks. Those based on time-resolved fluorescence resonance energy transfer, require a special reader plate, while others have been based on quenching the autofluorescence of the molecule tryptophan, which has a weak autofluorescence signal at a wavelength that standard readers cannot detect. Alternative assays have used reporter genes and take 3-4 days to detect ligand activity, or they have used radioisotope labelled ligands, where the issues that surround use of radioactive isotopes further complicate an already complex procedure.

Reference
Shoya Yamada, Mayu Kawasaki, Michiko Fujihara, Masaki Watanabe, Yuta Takamura, Maho Takioku, Hiromi Nishioka, Yasuo Takeuchi, Makoto Makishima, Tomoharu Motoyama, Sohei Ito, Hiroaki Tokiwa, Shogo Nakano, Hiroki Kakuta Competitive binding assay with an umbelliferone-based fluorescent rexinoid for retinoid X receptor ligand screening. Journal of Medicinal Chemistry 62, 8809−8818 4 September 2019.
DOI: 10.1021/acs.jmedchem.9b00995
https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00995

Correspondence to
Associate Professor KAKUTA Hiroki, Ph.D.
Division of Pharmaceutical Sciences,
Graduate School of Medicine, Dentistry and Pharmaceutical
Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku,
Okayama 700-8530, Japan
E-mail: kakuta-h(a)okayama-u.ac.jp
For inquiries, please contact us by replacing (a) with the @ mark.
http://www.cc.okayama-u.ac.jp/~kakuta-h/kakuta_lab_english/index.html

Website:
//www.okayama-u.ac.jp/index_e.html
Okayama Univ. e-Bulletin: //www.okayama-u.ac.jp/user/kouhou/ebulletin/
We love OKAYAMA UNIVERSITY: https://www.youtube.com/watch?v=7cXlttQIk3E
Okayama University Image Movie(2018)
https://www.youtube.com/watch?v=WmyqOTuigBs

Okayama University Medical Research Updates (OU-MRU)
The whole volume : OU-MRU (1- )
Vol.1:Innovative non-invasive ‘liquid biopsy’ method to capture circulating tumor cells from blood samples for genetic testing
Vol.2:Ensuring a cool recovery from cardiac arrest
Vol.3:Organ regeneration research leaps forward
Vol.4:Cardiac mechanosensitive integrator
Vol.5:Cell injections get to the heart of congenital defects
Vol.6:Fourth key molecule identified in bone development
Vol.7:Anticancer virus solution provides an alternative to surgery
Vol.8:Light-responsive dye stimulates sight in genetically blind patients
Vol.9:Diabetes drug helps towards immunity against cancer
Vol.10:Enzyme-inhibitors treat drug-resistant epilepsy
Vol.11:Compound-protein combination shows promise for arthritis treatment
Vol.12:Molecular features of the circadian clock system in fruit flies
Vol.13:Peptide directs artificial tissue growth
Vol.14:Simplified boron compound may treat brain tumours
Vol.15:Metamaterial absorbers for infrared inspection technologies
Vol.16:Epigenetics research traces how crickets restore lost limbs
Vol.17:Cell research shows pathway for suppressing hepatitis B virus
Vol.18:Therapeutic protein targets liver disease
Vol.19:Study links signalling protein to osteoarthritis
Vol.20:Lack of enzyme promotes fatty liver disease in thin patients
Vol.21:Combined gene transduction and light therapy targets gastric cancer
Vol.22:Medical supportive device for hemodialysis catheter puncture
Vol.23:Development of low cost oral inactivated vaccines for dysentery
Vol.24:Sticky molecules to tackle obesity and diabetes
Vol.25:Self-administered aroma foot massage may reduce symptoms of anxiety
Vol.26:Protein for preventing heart failure
Vol.27:Keeping cells in shape to fight sepsis
Vol.28:Viral-based therapy for bone cancer
Vol.29:Photoreactive compound allows protein synthesis control with light
Vol.30:Cancer stem cells’ role in tumor growth revealed
Vol.31:Prevention of RNA virus replication
Vol.32:Enzyme target for slowing bladder cancer invasion
Vol.33:Attacking tumors from the inside
Vol.34:Novel mouse model for studying pancreatic cancer
Vol.35:Potential cause of Lafora disease revealed
Vol.36:Overloading of protein localization triggers cellular defects
Vol.37:Protein dosage compensation mechanism unravelled
Vol.38:Bioengineered tooth restoration in a large mammal
Vol.39:Successful test of retinal prosthesis implanted in rats
Vol.40:Antibodies prolong seizure latency in epileptic mice
Vol.41:Inorganic biomaterials for soft-tissue adhesion
Vol.42:Potential drug for treating chronic pain with few side effects
Vol.43:Potential origin of cancer-associated cells revealed
Vol.44:Protection from plant extracts
Vol.45:Link between biological-clock disturbance and brain dysfunction uncovered
Vol.46:New method for suppressing lung cancer oncogene
Vol.47:Candidate genes for eye misalignment identified
Vol.48:Nanotechnology-based approach to cancer virotherapy
Vol.49:Cell membrane as material for bone formation
Vol.50:Iron removal as a potential cancer therapy
Vol.51:Potential of 3D nanoenvironments for experimental cancer
Vol.52:A protein found on the surface of cells plays an integral role in tumor growth and sustenance
Vol.53:Successful implantation and testing of retinal prosthesis in monkey eyes with retinal degeneration
Vol.54:Measuring ion concentration in solutions for clinical and environmental research
Vol.55:Diabetic kidney disease: new biomarkers improve the prediction of the renal prognosis
Vol.56:New device for assisting accurate hemodialysis catheter placement
Vol.57:Possible link between excess chewing muscle activity and dental disease
Vol.58:Insights into mechanisms governing the resistance to the anti-cancer medication cetuximab
Vol.59:Role of commensal flora in periodontal immune response investigated
Vol.60:Role of commensal microbiota in bone remodeling
Vol.61:Mechanical stress affects normal bone development
Vol.62:3D tissue model offers insights into treating pancreatic cancer
Vol.63:Promising biomarker for vascular disease relapse revealed
Vol.64:Inflammation in the brain enhances the side-effects of hypnotic medication
Vol.65:Game changer: How do bacteria play Tag ?
Vol.66:
Is too much protein a bad thing?
Vol.67:Technology to rapidly detect cancer markers for cancer diagnosis
Vol.68:Improving the diagnosis of pancreatic cancer
Vol.69:Early gastric cancer endoscopic diagnosis system using artificial intelligence
Vol.70:Prosthetics for Retinal Stimulation
Vol.71:The nervous system can contribute to breast cancer progression


0 件のコメント:

コメントを投稿